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An adaptively coupled continuum-molecular approach for compressible viscous flows in transient calculations is
presented. The continuum domain is described by the unsteady compressible Navier—Stokes equations, and the
molecular domain is solved by direct simulation Monte Carlo. A strategy is described to extend the overlapped
Schwarz method with Dirichlet-Dirichlet boundary-condition coupling procedure to transient simulations. The
method has been successfully validated against full direct simulation Monte Carlo results for transient simulations of
a one-dimensional shock tube and a two-dimensional pressure-driven slit flow. A sensitivity analysis showed that the
used overlapped Schwarz coupling method with Dirichlet-Dirichlet boundary conditions is only weakly sensitive to
various parameters (e.g., the exact position of the continuum/molecular interface, the size of the overlap region, and
the scatter in the molecular solution), which is a clear advantage over the more commonly used flux-based coupling
technique. Another advantage of the chosen coupling method is that the continuum and molecular time steps can be
decoupled and that, in general, a coupling time step can be used that is much larger than the molecular time step. The
study performed also highlighted a limit of the method: it was found to be necessary to keep the Courant number
(based on the coupling time step, the cell size in the continuum region, and the molecular most-probable velocity)

below 1 to avoid instabilities.

Nomenclature
C = Courant number
C, = most-probable molecular velocity
E = noise
h = height
Kn = Knudsen number
l = length
P = pressure
P, = pressure ratio
0 = generic flow property
N = surface
T = temperature
t = time
X, ¥,z = spatial coordinates
A = discreet value; difference
At, = mean collision time
e = prescribed small value
A = mean-free-path length
Q = computational domain
Subscripts
coupling = hybrid coupling method
CFD = computational fluid dynamics method
DSMC = direct simulation Monte Carlo method
f = fluxes
max = maximum value
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ref = reference value

split = limiting value used to split the continuum from the
molecular region

sV = state variables

T = temperature

Vv = velocity

w = wall

X = in the x direction

y = in the y direction

P = density

I.

NMANY practical applications, gas flows undergo spatial and/or
temporal transitions from continuum low Knudsen number

(Kn < 0.01) to rarefied high-Knudsen-number (K7n > 0.05) regimes
(e.g., dueto varying pressure or dimensions). Examples include flow
around vehicles at high altitudes (particularly reentry of vehicles in a
planetary atmosphere [1]), flow through microfluidic gas devices [2],
small cold-gas thruster nozzle and plume flows [3], and low-pressure
thin-film deposition processes from expanding plasma or gas jets [4].

Because the Navier—Stokes (N—S) equations are an accurate model
of the flow for Kn < 1 only, Navier—Stokes-based computational
fluid dynamics (CFD) models can simulate only gas flows with
Kn < 0.01 (or with modifications of boundary conditions less than
0.1), whereas gas flows with Kn > 0.05 can be simulated using
particle-based direct simulation Monte Carlo (DSMC) methods.
However, because DSMC computational costs scale with Kn™*, they
become prohibitively large when the Knudsen number becomes
lower than ~0.05.

Therefore, to accurately and efficiently simulate gas flows with
continuum-rarefied transition, it is necessary to construct a model
that, on one hand, accounts for the molecular nature of the gas flow
when needed and, on the other hand, uses a continuum model when
allowed. Such a hybrid model will provide sufficient accuracy at the
molecular level while being sufficiently efficient to model large-scale
devices.

To compute these kinds of flows, different hybrid models have
been proposed to couple different kinds of continuum and atomistic
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approaches: for instance, molecular dynamics (MD) and N-S
equations [5], Boltzmann and Euler equations [6], Boltzmann and
N-S equations [7,8], DSMC and Stokes equations [2], DSMC and
incompressible N-S equations [9], DSMC and Euler equations [9—
12], and DSMC and N-S equations [13-22].

In the current work, we have decided to couple a compressible
Navier—Stokes CFD solver in the continuum region (because of its
very wide range of applicability compared with, for example, Euler
and incompressible N-S equations) to a DSMC algorithm in the
rarefied region, because it is the only practical engineering method
that can be used in the rarefied regime.

Note that the vast majority of the cited hybrid models can be
applied only to steady-state gas flows [2,5-8,14-20], whereas there
are only few hybrid models that are suitable to simulate transient gas
flows [9-13]. The most common coupling technique for unsteady
gas flows [9-13] is a flux-based coupling method with no over-
lapping between the continuum and the DSMC regions. This
approach suffers from three mean disadvantages that reduce its
efficiency.

The first disadvantage is that using a flux-based coupling
approach, it is not possible to decouple the global (CFD) and mole-
cular (DSMC) time scales [9]. Because the fluxes at the interface
between the two approaches must be exchanged every time step, both
CFD and DSMC must be run using the same time step, the size of
which is to be chosen as the smallest of the two allowed by the CFD
solver and the DSMC solver. Because, in general, Atpgye << Afcrp,
this implies the necessity to also run the CFD solver with the same
molecular time step, thus reducing the efficiency of the method
[9.16,17].

The absence of an overlapping region is a second disadvantage in
most of the flux-based methods. Because the exchange of infor-
mation between the continuum and molecular approaches takes
place at the position of their interface, its exact location is important
[9,17]. Thus, in a flux-based coupling method, simulation results
strongly depend on the interface location.

The third disadvantage is connected with the DSMC statistical
scatter involved in determining fluxes, which is much higher than
that associated with the macroscopic state variables. As aresult, it has
been demonstrated that flux-based coupling methods require a high
number of samples to reduce the DSMC statistical noise [9].

In the current work, we propose a strategy to efficiently and
accurately couple a compressible N—S solver to a DSMC solver for
unsteady flows using Dirichlet-Dirichlet boundary-condition cou-
pling with an overlapped Schwarz method [9,15]. In Sec. IV.A.1, we
will show that this method overcomes most of the problems
described previously. Thus, given the disadvantages of flux-based
coupling methods without overlap [9-13], our work is a clear step
forward in the evolution of hybrid continuum-molecular approaches.

II. Breakdown Parameter

The firstissue in developing a coupled N—S/DSMC method is how
to determine the appropriate computational domains for the DSMC
and N-S solvers and the proper interface boundary between these
two domains. As a criterion for discriminating the continuum from
the rarefied regime and for consequently selecting the proper solver,
the continuum breakdown parameter Kn,,,, [23] is employed:

Knpex = max[Kn,, Kny, Kny] (1)
where Kn,, Kny, and Kny are evaluated according to

A

ref

Kny =

Vol 2

where Q is a flow property (density, velocity, or temperature), and its
reference value Q.. can either be its local value (for temperature or
pressure) or a typical value (for the velocity). In the region in which
the continuum breakdown parameter Kn,,,, exceeds a limiting value
Kng,;;, the N-S equations cannot be applied to accurately model the
flow, and DSMC has to be used. In the following section, the strategy

implemented for coupling the Navier—Stokes-based CFD code and
the DSMC code will be described.

III. Hybrid Coupling Method

The proposed coupling method extends the Schwarz method
described in [12,15,24] to transient flows. An extensive description
of the method and its validation against analytical, numerical, and
experimental data has already been presented in [24,25].

A. Continuum Algorithm: CFD

The CFD code used for solving the Navier—Stokes equations in the
low-Knudsen-number regions is an unsteady solver based on a finite
volume formulation in compressible form. It uses an explicit first-
order time integration in combination with a second-order, spatially
accurate, flux-splitting, MUSCL-scheme Riemann solver for the
Navier—Stokes equations [26,27]. An explicit scheme, although
computationally more expensive, is used because it is more accurate
and because computational expenses of the CFD solver are small
compared with those of the DSMC solver.

To match the macroscopic viscosity model to results from the
variable hard spheres (VHS) model used in the DSMC approach, as
described in the next section, temperature-dependent viscosities and
thermal conductivities are computed from kinetic theory [28]. The
pressure is computed from the ideal-gas law.

B. Molecular Algorithm: DSMC

Direct simulation Monte Carlo is a well-established algorithm for
computing rarefied gas dynamics at the level of the Boltzmann
equation; the algorithm is described in more detail in [29]. To
accurately model viscous effects, the VHS model is used to calculate
particle cross sections. For the implementation of inlet or outlet
boundary conditions, a buffer zone or particle reservoir approach is
used [18]. A Chapman—Enskog distribution is used to create particles
in those reservoirs. The Chapman—Enskog distribution is obtained as
an approximate solution of the Boltzmann equation and is expressed
as a product of a local Maxwellian and a polynomial function of the
thermal velocity components. It has been demonstrated that in a
hybrid continuum-DSMC method (a Chapman—Enskog distribution,
rather than a simple Maxwellian distribution) is required when the
viscous fluxes are taken into account [13,18].

C. Coupling Algorithm: Schwarz Method

The proposed coupling method consists of two stages, as illus-
trated in Fig. 1.

1) The first stage is a prediction stage, in which (step 1 in Fig. 1) the
unsteady N-S equations are integrated in time on the entire domain
€2 for a coupling time step Atcoupiing > Atcrp > Atpgmc:

2) From this predicted solution (step 2 in Fig. 1), the continuum
breakdown parameter Kn,,,, is computed and its values are used to
split 2 in the subdomains Qpgyc (K7 > Kngyie — AKn), where
the flowfield will be evaluated using DSMC, and Qcpp
(Knpax < Kngyie), where N=S equation will be solved. For Kngy;,
a value of 0.05 was used. Between the DSMC and CFD regions, an
overlap region (Kngy — AKn < Knp,, < Kng,,) is considered,
where the flow is computed with both the DSMC and the CFD solver
(Fig. 2). The value AKn was varied to vary the overlapping region
size (Sec. IV.A.1).

In the second stage, DSMC and CFD are run in their respective
subdomains with their own time steps (Afpgyc and Afcgp, respec-
tively) for a coupling time step Afqyping- The grid is automatically
refined in the DSMC region to respect the DSMC requirements (Ax,
Ay, and Az < 1/3).

First, DSMC is applied (step 3a in Fig. 1). The predicted DSMC
region is compared with that of the previous coupling time step. In
the cells that belong to both the previous and the predicted DSMC
regions, we consider the same molecules of the previous coupling
time step, for which the properties were recorded. In these cells, it is
important to consider the same molecules of the previous time step
rather than sampling them from continuum variables (temperature,
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Fig. 1 Scheme of the coupling method.

density, and velocity) with a Maxwellian or a Chapman—Enskog
velocity distribution. This is a clear difference with the procedure in
[13], in which at every time step, the molecules in the DSMC cells
are sampled from continuum variables with a Chapman—Enskog
velocity distribution. The use of a Maxwellian or a Chapman—
Enskog velocity distribution presumes either equilibrium or near-
equilibrium conditions, which is not necessarily true in these cells.
Molecules that are in the cells that no longer belong to the DSMC
region are deleted, whereas in cells that have changed from being a
CFD cell into a DSMC cell, new molecules are created with a
Chapman—Enskog velocity distribution, according to the density,
velocity, and temperature of the CFD solution at the previous
coupling time step. At the CFD/DSMC interface S, the boundary
conditions to the DSMC region come from the solution in the CFD
region. Particle reservoir cells are considered outside the overlap
region in which molecules are created according to the density,
velocity, temperature, and their gradients in the CFD solution with a
Chapman—Enskog velocity distribution.

After running the DSMC (step 3b in Fig. 1), the N-S equations are
solved in the CFD region. The boundary conditions to the CFD
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Fig. 2 Illustration of the Schwarz coupling method in a 2-D geometry.

region at the CFD/DSMC interface S, come from the solution in the
DSMC region, averaged over the initial CFD grid cells.

Once both the DSMC and CFD have been run in their respective
regions for a time Af.qping, the continuum breakdown parameter
Kn,,, is reevaluated and a new boundary between the two regions is
computed. This second stage (step 4 in Fig. 1) is iterated until (step 5
in Fig. 1) in the overlap region the relative difference between the
DSMC and CFD solutions

AQ

QDSMC

QCFD - QDSMC

max
overlap

=max
overlap

3

QDSMC

is less than a prescribed value ¢ (typically, ¢ ~ 0.001 [2]). At the end
of the described algorithm, the properties of the molecules in the
DSMC region are recorded to set the initial conditions in the DSMC
region for the next coupling step.

The first clear advantage of using a Schwarz method with
Dirichlet-Dirichlet boundary conditions for transient simulations
instead of the commonly used flux-based boundary-condition cou-
pling technique [9—13] is the possibility to decouple the global (CFD)
and molecular (DSMC) time scales [9]. Because it is possible to
couple the continuum and molecular approaches every coupling time
step Afeoupling > Alcrp > Alpsme, in fact, CFD and DSMC can
both be run in their respective subdomains with their own time steps
(Atpgmc and Atcgp, respectively), thus improving the efficiency of
the method.

On the contrary, as already highlighted in Sec. I, in the flux-based
methods [9-13], the continuum and molecular approaches must be
coupled every single time step, the size of which is to be chosen as the
smallest one allowed by both the CFD and the DSMC solver.
Because the molecular time step is generally much smaller than the
continuum time step, then At ,ypiing = Afcpp = Afpsuc-

The second advantage of the Schwarz coupling approach is the use
of an overlap region to couple the CFD method to DSMC. Thus, the
information exchange between the two methods does not take place
at the exact interface position between them, as for the most common
flux-based coupling approach [9-13], but through the entire overlap
region. For this reason, the simulation results are not strongly
influenced by the exact interface location.

The third advantage of using a Schwarz method with Dirichlet—
Dirichlet boundary conditions instead of the commonly used flux-
based boundary-condition coupling technique [9—13] is that the latter
requires a much higher number of samples in the DSMC region than
the Schwarz method [9,16,17]. It has been shown [17] that in a
DSMC simulation, the relation between the relative noise on fluxes
and that on the state variables is

ESU
~ s 4
Xn “4)

Ey
Because at the continuum-molecular interface Kn & 0.01-0.05,
then E, ~ 10-20E,, and 10-20 times more samples are necessary
to reduce the DSMC statistical scatter in a flux-based coupling
approach than in a Schwarz coupling method with Dirichlet—
Dirichlet boundary conditions.

IV. Results and Discussion

In this section, we will apply our hybrid, dynamically coupled,
CFD/DSMC solver to one-dimensional and multidimensional tran-
sient flows, and we will present a sensitivity analysis of the method to
various parameters.

A. Unsteady Shock-Tube Problem

The unsteady coupling method was applied to an unsteady shock-
tube test case (Fig. 3). We simulated the flowfield inside a 0.5-m-long
tube, connecting two infinitely large tanks filled with argon at
different thermodynamic conditions. A membrane at the interface
between the first tank and the tube divides the two regions in which
the fluid is in different conditions. In the left tank, it is at a pressure
P, =30 Pa and at a temperature 7, = 12,000 K. In the right tank
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T,= 12000 K | : T,= 2000 K
P=30Pa | Ar —|P,=3Pa
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L
Fig. 3 Shock-tube test case. The dashed line on the left indicates the
membrane that is broken at the instant # = 0.

and in the tube, it is at a pressure P, = 3 Pa and at a temperature
T, =2000 K. These conditions imply that the mean free path
(which approximately scales with 7'3/P) in the entire domain is
A= 0.01 m.

At the instant # = 0, the membrane breaks and the fluid can flow
from one region to the other. Two different waves will start traveling
in the tube from the left to the right with two different velocities: a
shock wave and a contact discontinuity. The shock wave produces a
rapid increase of the temperature and pressure of the gas passing
through it, whereas through the contact discontinuity, the flow
undergoes only a temperature, and not a pressure, variation [30-32].

The thermodynamic conditions inside the infinitely large tanks
remain constant. For this reason, the two tanks can be modeled with
an inlet and an outlet boundary condition.

Inside the tube, we suppose that the flow is one-dimensional.
Upstream (left) from the shock, the gas has a high temperature and
relatively high pressure, and gradient length scales are small.
Downstream (right) from the shock, both temperature and pressure
are much lower, and gradient length scales are large. As a result, the
continuum breakdown parameter Kn,,,, (using local values of Q)
is high upstream from the shock and low downstream of it. In the
hybrid CFD/DSMC approach, DSMC is therefore applied upstream
and CFD is applied downstream. For Kn,;, a value of 0.05 is used.
Rather than setting a value for AKn, as discussed in Sec. I, the size
of the overlap region is set to 2A. The initial grid is composed of 100
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cells in the x direction and 1 cell in the y direction, whereas the code
automatically refines the mesh in the DSMC region to fulfill its
requirements.

The coupling time step is chosen as At yypiing = 4.0 ¥ 10® s and
ensemble averages of the DSMC solution are made on 30 repeated
runs. Note that, due to the time-step decoupling possibility of the
Schwarz method, the CFD and DSMC approaches are run with
Atcpp ~2.0x 107% s and Atfpgye ~ 4.0 x 1077 s, respectively.
When time-step decoupling would not have been possible, we should
also have run the CFD solver and coupled it to the DSMC solver with
a time step of O(1077) s.

In Figs. 4 and 5, the pressure (Figs. 4a and 5a), temperature
(Figs. 4b and 5b), and velocity (Figs. 4c and 5c¢) inside the tube after
1.5x 1075 s and 3.0 x 1073 s, evaluated with the coupled CFD/
DSMC method, are compared with the results of a full DSMC
simulation. The latter was feasible because of the 1-D nature of the
problem. Results obtained with a full CFD simulation are shown as
well. The full DSMC solution is considered to be the most accurate of
the three. In Figs. 4d and 5d, the continuum breakdown parameter
computed using the coupled method is compared with that same
parameter computed with the full CFD simulation.

From the results shown in Figs. 4 and 3, it is clear that the full CFD
approach fails due to the high values of the local Knudsen number
caused by the presence of the shock. It predicts a shock thickness of
~2 cm, which is approximately 2 times the local mean free path
(A & 1 cm) and therefore unrealistic, because even in continuum
conditions, the shock thickness is 1 order of magnitude greater than
the mean free path [33]. In the full DSMC approach, therefore, the
shock is smeared over almost 10 cm. The results obtained with the
hybrid approach are virtually identical to those obtained with the full
DSMC solver, but they are obtained in ~25 min on a single
processor instead of the ~2.5 h needed for the DSMC simulation.
Thus, the hybrid method gives the same accuracy of the DSMC
method but in less than one-fifth of the CPU time.

Comparing Figs. 4 and 5, it is also possible to see how the DSMC
and CFD regions adapt in time to the flowfield evolution.

10000
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o
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2000 |

=1
N GQF— DSMC !

Fig. 4 Plots of a) pressure, b) temperature, c) velocity, and d) continuum breakdown parameter Kn,,,, in the tube after 1.5 x 10~° s; CFD (OJ), DSMC

(A), and hybrid (O).
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Fig. 5 Plots of a) pressure, b) temperature, c) velocity, and d) continuum breakdown parameter Kn,,,,, in the tube after 3.0 x 10~ s; CFD ((J), DSMC

(A), and hybrid (O).

1. Sensitivity to Numerical Parameters

In this section, the sensitivity of the coupled approach to various
numerical parameters is addressed for the 1-D shock-tube problem
described in Sec. IV.A. In particular, the influence of the size of the
overlap region, the DSMC noise, and the Courant number based on
the time interval at which DSMC and CFD are coupled are analyzed.

a. Overlap Region. The sensitivity of our method to the size
and position of the overlap region is investigated.

Both DSMC and N-S equations are solved in the overlap region
(Fig. 2). The dependence of the results on the size of the overlap
region is investigated by considering various overlap sizes: A /3, 24,
6A, and 12X. In Sec. IV.A, an overlap size of 2A is used.

Figure 6 shows the evolution in time of the shock velocity (Fig. 6a)
and the shock thickness (Fig. 6b) evaluated using the different
overlap sizes. From this figure, it is clear that the overlap size does not
strongly influence the results of the simulation.

During this analysis, for all the considered sizes of the overlap
region, two cases are tested: in the first, because the overlap is
centered around the position at which Kn = 0.05, it could extend

3500
3000
2500 |

2000 1

Shock velocity (m/s)

1500 F

1000:\\\\I\\\\I\\\\I\\\\I\\
0

10 20 30 40
time (us)

a)

also into the Kn > 0.05 region, whereas in the second, the overlap is
positioned such that it extended entirely in the Kn < 0.05 region. Itis
noted in the first case that if the overlap region is large, it is important
to use an asymmetric overlap that is bounded on one side by the
location at which Kn = 0.1. Otherwise, if the overlap region would
extend into regions in which Kn > 0.1, the program would solve the
N-S equations in a region in which the continuum hypotheses are no
longer valid. As a result, instability problems appear (Fig. 7). The
appearance of strong fluctuations due to instability produces two
effects: the establishment of incorrect boundary conditions to both
the CFD and DSMC solvers and an increase of the local gradients.
The increase of the local gradients and the resulting reduction of the
gradient length scales implies an incorrect determination of the CFD/
DSMC interface. As a consequence, the CFD/DSMC interface
rapidly moves into the low-Knudsen-number region and, together
with the wrong boundary conditions, produces rapid propagation of
the instability.

This section demonstrates an important advantage of the Schwarz
coupling with Dirichlet—Dirichlet boundary conditions. Because of
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Fig. 6 Plots of a) computed shock velocity and b) shock thickness as a function of time for different sizes of the overlap region; A /3 (A), 21 (V), 6\ (#),

and 12X (O).
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Fig. 7 Instability problems for an overlap region extending in the
Kn > 0.1 region, overlap entirely in the Kn < 0.1 region (H), and overlap
partially in the Kr > 0.1 region (O).

o

the presence of an overlap region, the information exchange
between CFD and DSMC does not take place at just one precise
location, as in the flux-based coupling approaches [9-13]. For this
reason, as long as we ensure that we run the CFD within its region of
applicability (Kn < 0.1), the exact position and size of the overlap
region are not crucial.

b.  Number of Repeated Runs for the Ensemble Average. To
analyze the effect of the noise in the DSMC solution on the coupling
method, we considered different number of repeated runs for the
ensemble average: 5, 30, and 50 runs.

From a comparison (not shown) of the evolution of the shock
velocity and thickness, similar to that in Figure 6, it also became clear
that the number of repeated runs over which we average does not
strongly influence the results of the method.

The limited sensitivity of our method to the noise demonstrates a
clear advantage of our Dirichlet-Dirichlet coupling method, as
compared with flux-based coupling schemes [9—13], which show a
strong sensitivity to noise.

c. Courant Number Based on the Coupling Time Step. In this
section, we study the effect of varying the coupling Courant number
defined as

At

coupling
C=C, _“coupling
Axcrp

®)

In Fig. 8, we present the evolution in time of both the shock
velocity (Fig. 8a) and its thickness (Fig. 8b) for different coupling
Courant numbers: 0.15, 0.24, 0.36, 0.73, and 1.46. To vary the
Courant number with C, =912 m/s, we fixed Axcpp = 0.005 m
and we considered different values of the coupling time step between
8.0 x 1077 s and 8.0 x 107 s. In terms of multiples of the mean
collision time, which is approximately Az, = 6.0 x 107 s, this
corresponds to 0.13A7.—1.3A¢,. Only in the case in which the
Courant number C = 1.46 > 1 is the solution found to deviate from
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Fig. 9 Instability problems for Courant number C = 1.46.

the other solutions. In this case, in fact, the shock thickness is higher
than for the other cases and the error is due to the appearance of
instability effects (Fig. 9).

To be sure about the Courant number effect, we also varied the
Courant number by varying Axcpp at fixed At yypiin, and fixed C,
and by varying C, (through the temperature) at fixed Axcpp and
At oupiing- Inall cases, instabilities were found to arise when C > 1, as
expected. It was therefore necessary to keep the Courant number
smaller than 1.

This section demonstrates a further advantage of our overlapped
Dirichlet-Dirichlet coupling method, as compared with flux-based
coupling schemes [9-13]. In the flux-based coupling techniques, the
impossibility of decoupling the continuum and molecular time scales
imposes the necessity to run both the CFD and the DSMC with the
molecular time step Afpgyic, Which should be less than 0.1A¢,, and
to couple them with that same time step. The Schwarz coupling, on
the other hand, allows us to run the CFD and DSMC with their own
time steps and to couple them every coupling time step AZcqypling @S
long as we respect the condition C < 1. In the present example, this
led to At qypiing Up to 0.7At,, a gain of a factor ~7, compared with
AtDSMC = O.IAIC.

B. Unsteady Pressure-Driven Slit Flow

To test our unsteady hybrid method in a multidimensional
problem, it was applied to an unsteady pressure-driven slit flow test
case (Fig. 10). The present test case is very similar to the test case
used by Roveda et al. [11] to present their flux-based hybrid Euler/
DSMC method without overlap.

We consider a jet of argon as it evolves following its initial burst
from a slit of height #=0.05m in a wall at temperature
T, = 500 K. Before breaking, a membrane closes the slit, dividing
two regions in which the fluid is in different conditions. In the left
tank, it is at a pressure P; = 16 Pa and a temperature 7; = 500 K,
and the mean-free-path length is A; ~3.0x 107 m. In the

o

20
time (us)

30 40

Fig. 8 Plots of a) computed shock velocity and b) shock thickness for different coupling Courant numbers; C = 1.46 (H), C = 0.73 (A), C = 0.36 (V),

C =0.24 ($),and C = 0.15 (O).
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Fig. 10 Pressure-driven slit flow. The dashed line on the left indicates
the membrane that is broken at the instant # = 0.

X (m)
Fig. 11 Structure of the jet: density field (10~5 kg/m?) in the jet after
5.25 x 10~ s. Initial weak shock wave (B1), jet front (S1), normal shock
(S2), shear layer (SH), and expansion region (E).

environment (right), it is at a pressure P, = 1.6 Pa and a temperature
T, =500 K, and the mean free path is A, &~ 0.003 m.

At the instant ¢ = 0, the membrane breaks, the gas can flow from
left to right, and a complex jet structure begins to develop. Note that

0.2F

0.2 0.3

a)

0.2F

CFD

0.3

Fig. 12
c) after 2.10 x 10~ s and d) after 5.25 x 10~* s.
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for the chosen pressure ratio P,_, = P, /P, = 10, a supersonic jet
develops downstream the slit [11].

Figure 11 shows the density field after 5.25 x 10~* s, as evaluated
by a full DSMC simulation, illustrating the structure of the jet. In
particular, note the initial weak shock wave (B1), the jet front (S1), a
normal shock (S2), a shear layer (SH), and the starting evolution of an
expansion region near the lips of the slit (E) according to the
description in [11]. From symmetry considerations, we limit the
simulation domain to the upper half of the flow domain, which
extends for a length [/, = 0.4 m in the x direction and /, = 0.5 m in
the y direction.

The thermodynamic conditions inside the infinitely large left tank
remain constant, and thus it can be modeled with an inlet boundary
condition.

The initial grid is composed of 120 cells in the x direction and 60
cells in the y direction. The code automatically refines the mesh in the
DSMC region to fulfill its requirements. The coupling time step is
At equpiing = 2.0 X 107 s, which corresponds to a coupling Courant
number C & 0.75. The ensemble averages of the DSMC solution
were made on 50 repeated runs. In Fig. 12, the continuum breakdown
parameter Kn,,,, in the jet is shown after 2.10 x 10~* s (Fig. 12a)
and 5.25 x 10~ s (Fig. 12a), together with the division between the
DSMC, CFD, and overlap regions in the hybrid CFD/DSMC
approach. Outside the jet, because of the absence of gradients,
gradient length scales are large and Kn,,,, (using local values of Q)
is low. In the complex structure of the jet, Kn,,, is particularly high
in the expansion region E (where the mean free path is higher), in the
shocks (B1 and S2), and in the jet front (S1) because of the small
gradient length scales due to the high gradients. In the hybrid CFD/
DSMC approach, CFD is therefore particularly applied outside the
jet, whereas the use of DSMC is especially required in the expansion
E and in the region of the jet front S1 and the shock S2. Comparing
Figs. 12c and 12d, it is possible to see the adaptation of the DSMC
and CFD regions to the evolution of the flowfield.

In Fig. 13 the density fields evaluated by the hybrid CFD/DSMC
approach after 2.10 x 107 s and 5.25 x 10~ s are compared with
the results of full DSMC and CFD simulations. The full DSMC
solution is considered to be the most accurate of the three.

Comparing Figs. 13a—13f, respectively, one can see the evolution
of the jet in time, predicted by the three methods. Note that the
elements of the jet that are not clearly distinguishable after 2.10 x
10~ s begin to have a clear shape and identity after 5.25 x 107* s.

0.2

- 0.1

- Q
L S

ST~ 2
&QP - Q{;\Qo >
B 00z A
0 0.1 0.3
x (m)
b)
o2f CFD
E
>
013

d)

Contours of the continuum breakdown parameter Kn,,,,: a) after 2.10 x 10~* s and b) after 5.25 x 10~* s; CFD/DSMC domain splitting
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In Fig. 13, the hybrid method results in much better agreement
with the DSMC than the full CFD simulations. The differences
between the CFD and the other two methods increase in time, and
after 5.25 x 10~ s, the jet predicted by the CFD method covers a
too-wide region and the density after the shock S2 is too low if
compared with the DSMC results.

To have a more quantitative validation of the hybrid approach,
Fig. 14 shows the density along the x axis for the hybrid method, the
full CFD simulation, and the full DSMC simulation after 2.10 x
10~* s (Fig. 14a) and 5.25 x 10 s (Fig. 14b). Although the results
obtained with the hybrid approach are virtually identical to those
obtained with the full DSMC solver, significant differences, which

increase in time, can be observed between the full CFD and DSMC
approaches. In particular, in the full CFD results, the jet travels
slightly faster and the density after the shock S2 is lower.

Finally, the crucial fact to emphasize is that the hybrid results were
obtained in ~24 h on a single processor instead of the ~250 h
(~1/10) of CPU time needed by the full DSMC method.

V. Conclusions

In this work, a hybrid continuum-rarefied method for multiscale
flow simulation was presented. The method couples a compressible
Navier—Stokes description of a macroscale continuum gas flow with
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a molecular scale DSMC description of a rarefied gas flow in
unsteady conditions. Transient simulations of a one-dimensional
shock tube and a two-dimensional pressure-driven slit flow with the
proposed method were successfully validated against full DSMC
simulations. The results of the method were found to be independent
of the size of the overlap region and the CFD/DSMC interface
position as long as we ensure to run the CFD in the limits of its
applicability (Kn < 0.1). The method also has limited sensitivity to
noise, as demonstrated by its insensitivity to the number of DSMC
runs for ensemble averaging to reduce scatter. However, to avoid
instability effects, the coupling time step and the CFD cell size
should be chosen such that the Courant number based on these
quantities and on the molecular most-probable velocity is less than 1.
These validation studies illustrate the potential of the method for
transient, one-dimensional, and multidimensional flows.
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